随着Spark项目的逐渐成熟, 越来越多的可配置参数被添加到Spark中来。在Spark中提供了三个地方用于配置:
1、Spark properties:这个可以控制应用程序的绝大部分属性。并且可以通过 SparkConf对象或者Java 系统属性进行设置;
2、环境变量(Environment variables):这个可以分别对每台机器进行相应的设置,比如IP。这个可以在每台机器的$SPARK_HOME/ conf/spark-env.sh脚本中进行设置;
3、日志:所有的日志相关的属性可以在log4j.properties文件中进行设置。
下面对这三种属性设定进行详细的说明。
一、Spark properties
Spark properties可以控制应用程序的绝大部分属性,并且可以分别在每个应用上进行设置。这些属性可以直接在SparkConf对象上设定,该对象可以传递给SparkContext。SparkConf对象允许你去设定一些通用的属性(比如master URL、应用的名称等),这些属性可以传递给set()方法的任意key-value对。如下:
val conf = new SparkConf() .setMaster("local") .setAppName("CountingSheep") .set("spark.executor.memory", "1g") val sc = new SparkContext(conf)
动态加载Spark属性
在一些场景中,你可能想避免在代码中将SparkConf对象的属性进行设死;比如,你可能想在不同的master上面或者不同内存容量运行你的应用程序。这就需要你运行程序的时候进行设置,Spark允许你创建一个空的conf对象,如下:
val sc = new SparkContext(new SparkConf())
然后你可以在运行的时候通过命令行进行一些属性的配置:
./bin/spark-submit --name "My app" --master local[4] --conf spark.shuffle.spill=false --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" myApp.jar
Spark shell和 spark-submit工具支持两种方式来动态加载配置属性。第一种是命令行方式,比如--master;spark-submit工具可以通过--conf标记接收任何的Spark属性。运行 ./bin/spark-submit --help将会显示全部的选项。
./bin/spark-submit工具也会从 conf/spark-defaults.conf配置文件中读取配置选项。 在conf/spark-defaults.conf配置文件中,每行是key-value对,中间可以是用空格进行分割,也可以直接用等号进行分割。如下:
spark.master spark://iteblog.com:7077 spark.executor.memory 512m spark.eventLog.enabled true spark.serializer org.apache.spark.serializer.KryoSerializ
每个值将作为一个flags传递到应用中并个SparkConf对象中相应的属性进行合并。通过SparkConf 对象配置的属性优先级最高;其次是对spark-submit 或 spark-shell通过flags配置;最后是spark-defaults.conf文件中的配置。
哪里可以查看配置好的Spark属性
在应用程序对应的WEB UI(http://<driver>:4040)上的Environment标签下面将会显示出该应用程序的所有Spark配置选项。在你想确定你的配置是否正确的情况下是非常有用的。需要注意的是,只有显示通过spark-defaults.conf 或SparkConf 进行配置的属性才会在那个页面显示。其他所有没有显示的属性,你可以认为这些属性的值为默认的。
二、环境变量
有很大一部分的Spark设定可以通过环境变量来进行设定。这些环境变量设定在conf/spark-env.sh 脚本文件中(如果你是windows系统,那么这个文件名称是conf/spark-env.cmd)。在 Standalone 和 Mesos模式下,这个文件可以设定一些和机器相关的信息(比如hostname)。
需要注意,在刚刚安装的Spark中conf/spark-env.sh文件是不存在的。但是你可以通过复制conf/spark-env.sh.template文件来创建,你的确保这个复制之后的文件是可运行的。
下面的属性是可以在conf/spark-env.sh文件中配置
JAVA_HOME Java的安装目录 PYSPARK_PYTHON Python binary executable to use for PySpark. SPARK_LOCAL_IP IP address of the machine to bind to. SPARK_PUBLIC_DNS Hostname your Spark program will advertise to other machines.
对于 standalone 模式的集群除了上面的属性可以配置外,还有很多的属性可以配置,具体我就不说了,自己看文档去。
三、日志配置
Spark用log4j来记录日志。你可以通过配置log4j.properties来设定不同日志的级别、存放位置等。这个文件默认也是不存在的,你可以通过复制log4j.properties.template文件来得到。
总结
以上就是本文关于Spark三种属性配置方式详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Spark实现K-Means算法代码示例、浅谈七种常见的Hadoop和Spark项目案例、Spark的广播变量和累加器使用方法代码示例等,有什么问题可以随时留言,小编会及时回复大家的。
spark,三种配置方式
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]